The influence of weather and weather variability on mosquito abundance and infection with West Nile virus in Harris County, Texas, USA

Karen C. Poh a, Luis F. Chaves b, Martin Reyna-Nava c, Christy M. Roberts c, Chris Fredregill c, Rudy Bueno Jr. a, Mustapha Debboun c, Gabriel L. Hamer a,⁎

a Department of Entomology, Texas A&M University, College Station, TX, USA
b Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud (INCIENSA), Tres Ríos, Cartago, Costa Rica
c Mosquito and Vector Control Division, Harris County Public Health, Houston, TX, USA

HIGHLIGHTS
• 10,533,033 female Culex quinquefasciatus mosquitoes collected from 2002 to 2015 in Harris County, Texas, USA.
• Time series analysis correlates weather, vegetation, mosquito abundance and infection with West Nile virus.
• Models suggest increased variability in temperature and rainfall increase mosquito abundance, supporting Schmalhausen’s law.
• Warmer winter temperatures were related to increased mosquito infection with West Nile virus eight months later.

ABSTRACT
Early warning systems for vector-borne diseases (VBDs) prediction are an ecological application where data from the interface of several environmental components can be used to predict future VBD transmission. In general, models for early warning systems only consider average environmental conditions ignoring variation in weather variables, despite the prediction from Schmalhausen’s law about the importance of environmental variability for biological systems. We present results from a long-term mosquito surveillance program from Harris County, Texas, USA, where we use time series analysis techniques to study the abundance and West Nile virus (WNV) infection patterns in the local primary vector, Culex quinquefasciatus Say. We found that, as predicted by Schmalhausen’s law, mosquito abundance was associated with the standard deviation and kurtosis of environmental variables. By contrast, WNV infection rates were associated with 8-month lagged temperature, suggesting environmental conditions during overwintering might be key for WNV amplification during summer outbreaks. Finally, model validation showed that seasonal autoregressive models successfully predicted mosquito WNV infection rates up to 2 months ahead, but did rather poorly at predicting mosquito abundance, a result that might reflect impacts of vector control for mosquito population reduction, geographic scale, and other artifacts generated by operational constraints of mosquito surveillance systems.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction
Early warning systems of vector-borne diseases (VBDs) are crucial to the effective and efficient control of a disease prior to the appearance of
human infections. To develop early warning systems, a complete understanding of the ecology of the disease system and its extrinsic environmental drivers is necessary. Early warning systems have used a variety of methods and data sources such as vegetation and weather in combination with geographic information systems/remote sensing to predict various VBDs including malaria in Africa, American Cutaneous Leishmaniasis in Costa Rica, dengue in Brazil, and West Nile virus (WNV) in the United States of America (USA), among many other VBDs (Chaves and Pascual, 2007; Connor et al., 1999; Craig et al., 1999; Kuhn et al., 2005; Lowe et al., 2013; Manore et al., 2014; Rogers and Randolph, 2003; Ruiz et al., 2010; Shand et al., 2016; Thomson and Connor, 2000; Thomson et al., 2006).

Most models used in the development of early warning systems for disease prediction have used mean (average) environmental variables as inputs for model development. However, studies suggest that models could be improved by including measurements of environmental variability. For example, it has been observed that higher order statistical moments of environmental variability in weather, such as kurtosis or standard deviation, allow more accurate prediction of abundance in several mosquito species (Chaves, 2016; Chaves et al., 2011a; Chaves et al., 2012; Hayes and Downs, 1980; Ng et al., 2018; Shaman and Day, 2007). This prediction follows Schmalhausen's law, the ecological principle stating that organisms are sensitive to not only average patterns, but also to variability patterns (Chaves and Koenaardt, 2010; Lewontin and Levins, 2000). For instance, organisms are susceptible to variability in their environment when stressed by any single environmental component (Chaves and Koenaardt, 2010; Lewontin and Levins, 2000). In principle, environmental variability can be measured by higher order statistical moments, such as the variance, which measures a variable's dispersion around its mean (Fig. S1A). Another example is kurtosis, which measures whether a variable is more unpredictable on the extremes of a distribution with respect to the mean, generating a leptokurtic distribution, or if an environmental variable is more unpredictable around the mean, generating a platykurtic distribution (Fig. S1B) (Chaves et al., 2011a).

In general, it is expected that biological systems are more sensitive to platykurtic environmental components, provided that there is more uncertainty regarding values around a mean, than in a leptokurtic environment, where there is relatively low variability when the environment fluctuates around the mean (Levins, 1968). Due to their complex biology, VBDs are excellent model systems to test the hypothesis around Schmalhausen's law, given the confluence of many different organisms that have different degrees of autonomy and interactions with changing environments in both their life cycles and the ecological interactions leading to pathogen transmission (Chaves, 2017). The VBD patterns of interaction with the changing environment might be one of the key components to explain the emergence of new diseases and their successful establishment in new habitats (Levins et al., 1994). Among VBDs, WNV is a zoonotic disease with an enzootic cycle involving avian amplification hosts and mosquito vectors that recently invaded North America (Weaver and Reisen, 2010). Despite the abundance of studies examining its association with environmental variables (Brown et al., 2008b; Chase and Knight, 2003; Degroote et al., 2014; Randolph and Rogers, 2010; Reisen, 1995; Reisen et al., 2008; Reisen et al., 2006a; Reisen et al., 2006b; Reisen et al., 2010; Ruiz et al., 2010; Shand et al., 2016), little to no studies inquire about the impacts of environmental variability on its transmission. West Nile virus is a pathogen that was first introduced to the USA in 1999, and has since spread throughout North America. Since its introduction in the USA, 46,086 cases of WNV and 2,017 deaths have been recorded as of 2016 (CDC, 2016). The WNV transmission cycle involves avian hosts that amplify the virus acquired via infected mosquito bites, and then can infect bloodsucking mosquitoes that continue transmission among avian hosts or bridge transmission to “dead-end hosts,” such as horses and humans, which are not able to infect mosquitoes (Weaver and Reisen, 2010). Culex spp. mosquitoes are the primary WNV enzootic and amplification vectors (Turell et al., 2005; Weaver and Reisen, 2010), and also one of several species capable of “bridge transmission” between animal and human hosts (Hamer et al., 2008a; Hamer et al., 2008b; Kilpatrick et al., 2005).

The amplification of WNV is highly heterogeneous each season, with periodic outbreak years mixed with low levels of virus transmission, and weather is one of the suggested key factors driving these patterns (Chung et al., 2013; Ruiz et al., 2010). For example, weather plays a vital role in the abundance of mosquito populations and subsequent pathogen transmission (Chaves, 2017). Increasing ambient temperature, up to a point, will increase the rate of development, productivity, and abundance of mosquito populations and decrease the extrinsic incubation period, which is the time interval between the uptake of an infectious blood meal until the mosquito is capable of transmitting the virus (Dohm et al., 2002; Reisen et al., 2006b; Rueda et al., 1990; Smith, 1987).

In addition, precipitation is known to have important consequences on mosquito productivity and abundance (Chung et al., 2011; Degroote et al., 2014; Ruiz et al., 2010), which also influences WNV transmission. However, the influence of prior precipitation on WNV transmission is complex and no clear patterns have emerged from multiple studies (Chung et al., 2012; Chung et al., 2013; Landesman et al., 2007; Paz and Semenza, 2013). Precipitation creates small pools of water that become enriched, creating suitable oviposition habitats for gravid female mosquitoes (Britton, 1914; Calhoun et al., 2007; Soverow et al., 2009; Takeda et al., 2003). Culex quinquefasciatus Say can often be found in artificial containers that are common in urban environments (Andreadis, 2012; Diaz-Badillo et al., 2011; Vezzani, 2007) and this mosquito species selects nutrient enriched habitats (Chaves et al., 2009). The survival of Cx. quinquefasciatus mosquitoes relies on these containers because they are often filled with enriched organic material and water collected from precipitation (Chaves et al., 2011b; Ponnusamy et al., 2008). However, heavy rainfall can flush larval habitats and reduce adult mosquito productivity (Koenraadt and Harrington, 2008; Shiman et al., 2002). Furthermore, drought conditions can disrupt the aquatic ecosystem of predators and competitors that serve to limit mosquito larval activity, allowing larvae to fully develop and emerge as adults (Chase and Knight, 2003).

Temperature and precipitation can affect the amount of vegetation present. Vegetation can serve as resting habitats for adult mosquitoes, roosting sites for avian hosts that female mosquitoes utilize for a blood meal, and sources of nutrition during the development cycle of the immature stages of mosquitoes (Brown et al., 2008a; Gardner et al., 2013; Ward et al., 2005).

Texas has experienced consistent epidemics contributing 12.0% and 14.0% of the national human WNV cases and deaths, respectively (CDC, 2016). During the largest epidemic of WNV in 2012, Texas contributed 1868 total cases (West Nile fever and West Nile neuroinvasive disease) and 89 deaths, which was 32.9% of the cases and 31.1% of the deaths reported that year, respectively (CDC, 2016). The costs associated with this outbreak including medical care, vector control, and productivity loss were estimated to be approximately $47.6 million (Murray et al., 2013). Given the significant economic loss associated with WNV, it is important to understand the ecology of WNV transmission dynamics as a key role for effective intervention strategies. Quantitative predictive models as part of an early warning system for WNV transmission have been developed for certain regions of the USA, but they have not been parameterized for Texas, USA. In central and southeast Texas, the southern house mosquito Culex quinquefasciatus is the most relevant mosquito species involved in the transmission cycle (Lillibridge et al., 2004; Molaei et al., 2007). Being able to predict when and where WNV infection in the Culex mosquito population is greatest provides an early warning system and the opportunity to control mosquitoes before bridge transmission to humans and alert the public with the appropriate messages to reduce WNV exposure risk.
Utilizing a long-term dataset from Harris County, Texas, USA we examined the influence of weather patterns, including mean conditions and higher order statistical moments like standard deviation (SD) and kurtosis, on the abundance and WNV infection of *Cx. quinquefasciatus*, the main WNV vector in southeast Texas. We hypothesized that annual and seasonal weather patterns affect mosquito biology and WNV transmission dynamics, which contribute to the temporal heterogeneity in the abundance and WNV infection rates of *Cx. quinquefasciatus*. We also expected that previous winter temperatures, which set the conditions for mosquito overwintering (Chaves et al., 2018; Chung et al., 2013; Dohm and Turell, 2001; Reisen et al., 2006a), might influence *Cx. quinquefasciatus* WNV infection rates in the subsequent summer, thus creating the expectation of long delays in the association between temperature and WNV infection rates in *Cx. quinquefasciatus*.

2. Materials and methods

2.1. Study area

Harris County, TX includes the metropolitan city of Houston and has a population of 4.7 million people according to the 2017 USA Census estimates, making it the most populated county in Texas and the third most populated county in the USA (United States Census Bureau, 2018). Its unique location along the Gulf makes it prone to severe weather such as hurricanes, which result in major flooding events. To counteract flooding events, Harris County has a large flood control system comprised of several different water containment parts, such as bayous, channels, storm drains, and sewers, many of which are aging and rich with organic materials suitable for mosquito breeding (Molaei et al., 2007). Following outbreaks of St. Louis Encephalitis (SLE) virus, a similar arbovirus to WNV, which amplifies in Culex mosquitoes and birds with spillover transmission to humans, Harris County first began its mosquito surveillance program in 1965. Since then, the surveillance program has generated considerable mosquito disease research, expanded their surveillance to include WNV, dengue, chikungunya, and Zika viruses, and generated a robust long-term mosquito abundance and WNV infection dataset (Dennett and Debboun, 2017). Other publications have focused on the most populous areas within the I-610 highway loop, which mainly comprises Houston (Curtis et al., 2014; Dennett et al., 2007a; Rios et al., 2006), however, this study will analyze data from the entire county.

2.2. Mosquito data

Harris County Public Health Mosquito and Vector Control Division (HCPH MVCD) conducted weekly mosquito surveillance from 2002 to 2016. HCPH MVCD consistently used a combination of storm sewer (SS) and gravid (GV) traps for WNV surveillance throughout the county (Fig. 1). The SS traps are modified CDC Light Traps baited with dry ice and attached to man hole covers underground to attract host-seeking mosquitoes (Molaei et al., 2007). The GV traps mainly attract ovipositing adult female mosquitoes and are baited with hay infusion water and placed in residential yards, usually under vegetation. The hay infusion is composed of mixing 1.3 kg of Coastal bermudagrass, *Cynodon dactylon* (L.), with 42 gal of water and then aged for 10–14 days (Dennett et al., 2007b; White et al., 2009). Other trap types used by HCPH MVCD included under-house traps, which are CDC traps baited with dry ice and placed in crawl spaces underneath houses (Morris and DeFoliart, 1969), and BG traps, which are baited with BG lures from Biogents (Regensburg, Germany). While HCPH MVCD used a combination of traps, only data from SS and GV traps were analyzed given their ubiquitous usage throughout the study period and the county.

The mosquito collection protocol from Harris County has been described in detail elsewhere (Curtis et al., 2014; Molaei et al., 2007). Briefly, traps are placed in the afternoon between 1:30 PM and 5:00 PM and then collected the following morning between 7:30 AM and 10:30 AM. Traps are placed into “operational areas,” which are comprised of lines that divide the county for surveillance, inspection, and control operations (Hunt and Hacker, 1984). The 268 operational areas are based on municipal, district, and zip code lines. Live mosquitoes were brought back to the laboratory and frozen at −70 °C. Mosquitoes were identified by species and sex by using keys in Darsie Jr. and Ward (2005) and on a chill table to preserve the presence of the virus and then sorted into pools of ≤50 mosquitoes, with a maximum of three pools per trap. Mosquito abundance was estimated as the average

![Fig. 1. Map of Harris County, weather stations and trap locations. The background map is courtesy of Google Earth – Harris County is highlighted and the location of mosquito traps, gravid and storm-sewer (SS) traps, are indicated with different symbols. Weather stations are color coded according to whether they recorded temperature and rainfall, only rainfall, or only temperature. For details about symbols and color codes, please refer to the inset legend.](image-url)
number of mosquitoes trapped during one trap-night. Thus, monthly abundance estimates are the total number of mosquitoes divided by the total number of traps deployed each month. Monthly mosquito abundance was estimated for SS and GV separately, considering these traps collect mosquitoes at different physiological states, and also combined mosquito counts from both traps, assuming this estimate will be more representative of field mosquito populations which include both host-seeking and ovipositing females. The HCHP MVCD Virology Laboratory tested for WNV antigen in mosquito pools using an enzyme-linked immunosorbent assay (ELISA) and positive results were confirmed with a Rapid Analyte Measurement Platform (RAMP) test (Lillibridge et al., 2004; Randle et al., 2016). To be considered a positive pool, the mosquito pool must test positive on both the ELISA and RAMP test. A positive pool is a mosquito pool that contains at least one Cx. quinquefasciatus mosquito positive for WNV. Using data from all the pools tested, we estimated monthly infection rates under the assumption that the diagnostic methods have a sensitivity near 1, using a maximum likelihood estimation method for unequal pool size that is fit with a complimentary log-log link generalized linear model (Farrington, 1992) and confidence intervals that are estimated by inverting a likelihood ratio test (Rigg et al., 2019; Speybroeck et al., 2012). None of our monthly estimates were based on a sample where all pools were positive for WNV.

When generating the time series, we inputted missing values for December 2003 and January 2004, when no traps were deployed by HCHP MVCD, which was done via interpolation using a loess regression as described by Ng et al. (2018).

2.3. Weather and vegetation data

For this study, we acquired data for global climatic indices and local weather for Harris County, TX. To evaluate the impact of global climatic phenomena on Cx. quinquefasciatus abundance and its WNV infection rate, we downloaded monthly data for the Niño 3.4 index from the USA National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center (NOAA National Weather Service, 2018). The Niño 3.4 index is associated with interannual rainfall dynamics in Texas (Li and Kafatos, 2000), based on the Extended Reconstructed Sea Surface Temperature version 5 (Huang et al., 2017), and corresponds to sea surface temperatures measured in the area delimited by 5°N–5°S and 170°W–120°W of the Pacific Ocean. Furthermore, the Niño 3.4 index defines the two alternate states during the El Niño Southern Oscillation (ENSO), El Niño (“hot ENSO phase,” anomalously warm waters in the eastern tropical Pacific Ocean) and La Niña (“cold ENSO phase,” anomalously cool waters).

To evaluate the impact of local climatic indices in our data, we used data from weather stations located inside Harris County or neighboring counties (Fig. 1). We used the Climate Data Explorer from the Royal Netherlands Meteorological Institute (KNMI, 2018) to download daily weather data, and searched for stations that had at least 10 years of data. We specifically selected the following weather stations (coordinates and Global Historical Climatological Network (GHCN) Code) (Fig. 1): Baytown (29.91°N, -94.99°E, US00410586), Clover Field (29.52°N, -95.24°E, USW00012975), Hobby Airport (29.64°N, -95.28°E, USW0012918), Houston Intercontinental Airport (29.98°N, -95.36°E, USW00012960), Hooks Airport (30.07°N, -95.56°E, USW00053910), and Sugarland (29.62°N, -95.66°E, USW00012977), which had both temperature and rainfall records for our study period. Stations that had data for only rainfall included: Cypress (30.02°N, -95.71°E, US00412206), New Caney (30.14°N, -95.18°E, US00416280), North Houston (29.87°N, -95.53°E, US00413247), Richmond (29.58°N, -95.76°E, US00417594), and Westbury (29.66°N, -95.63°E, US00413425). Data for only temperature was available at Dayton (30.10°N, -94.93°E, USR0000TDAY).

We processed the daily data to generate monthly time series for the study period. We computed the monthly mean, SD, and kurtosis for temperature and rainfall in Harris County. The SD and kurtosis estimates were based on daily temporal and spatial data from the weather stations in Fig. 2. For comparison, we also downloaded from the Earth System Research Laboratory (ESRL) gridded weather data from Global Historical Climatological Network/Climatic Anomaly Monitoring System (GHCN/CAMS) 2 m (temperature) (NOAA ESRL, 2018a) and global precipitation climatology project (GPCP) (rainfall) (NOAA ESRL, 2018b), with resolutions of 0.5° and 0.25°, respectively, which were only available as monthly averages based on daily data.

We downloaded monthly images for vegetation indices with a 1-km resolution vegetation (M*D13A3) based on MODIS satellite images (Didan, 2015). The Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) are considered proxies for vegetation growth (Pettorelli et al., 2005). The images, which are courtesy of the NASA Land Processes Distributed Active Archive Center (LP DAAC), United States Geological Survey (USGS)/Earth Resources Observation and Science (EROS) Center (Sioux Falls, South Dakota), were downloaded from the server (NASA, 2018) using the package MODISStp for the software R (Busetto and Ranghetti, 2016). Each image was clipped to the surface of Harris County, and stacked into a geotiff using the package raster for R (Brunsdon and Comber, 2015). For each monthly image, we estimated the mean, SD and kurtosis for NDVI and EVI during the study period, which were based on information from the image pixels.

2.4. Statistical analysis

2.4.1. Seasonality

Seasonal profiles for all the mosquito time series, vegetation, and weather variables were built using monthly boxplots (Venables and Ripley, 2002).

2.4.2. Non-stationary patterns of association in the time series

We studied the association of cycles in the time series using a cross wavelet coherence analysis to identify non-stationary association patterns (i.e., changes through time) and the association between cycles in the time series, or coherence, whose period might be variable and not repetitive or seasonal (Cazelles et al., 2007; Chaves and Pascual, 2006). We used this technique to study the association between mosquito abundance and infection with the Niño 3.4 index, NDVI, EVI, temperature, and rainfall.

2.4.3. Time series modeling

To fit and select variables for monthly time series models of mosquito abundance and WNV infections in pools, we used a standard protocol for the time series analysis (Hurtado et al., 2014; Hurtado et al., 2018). The first step consists of assessing the correlation of each time series with itself by inspecting the autocorrelation function (ACF) as well as the correlation of consecutive time lags using a partial autocorrelation function (PACF) (Shumway and Stoffer, 2011). Information from the ACF and PACF will identify a null model that considers the autocorrelation structure of the focal time series. This null model was used to pre-whiten the times series with the Kalman filter. Pre-whitening is a process to remove a common autocorrelative structure that can generate spurious correlations from the climate, weather, and vegetation indices (Shumway and Stoffer, 2011). Residuals from the autonomous model and the pre-whitened time series were used to estimate cross correlation functions (CCFs), which show the correlation between two time series as a function of fixed time lags (Hoshi et al., 2014). Once we identified significant lags of the covariates between 1 and 12 months (P < 0.05), the lags were used to fit full models of mosquito abundance and mosquito WNV infection. Models were simplified by model selection through backward elimination (Kuhn and Johnson, 2013), following the minimization of the Akaike Information Criterion (AIC) (Faraway, 2016). This process allows model selection among models with similar parameter numbers (Faraway, 2016). For the
best-fit models, we tested if variables, whose parameters were not significant, could be eliminated using likelihood ratio tests (Faraway, 2016), and the resulting models are reported as the best models in the Results section. For the best models, we verified time series model assumptions using standard procedures for the time series analysis (Shumway and Stoffer, 2011).

Fig. 2. Monthly time series. (A) Sea surface temperature in the El Niño 3.4 region (Niño 3.4) (°C) (B) average number of mosquito per trap (C) West Nile virus mosquito infection rate (D) vegetation indices, including the Normalized Difference Vegetation Index (NDVI), and the Enhanced Vegetation Index (EVI); (E) average temperature (°C) (F) average rainfall (mm/day) (G) standard deviation, SD, of NDVI and EVI (H) SD of temperature (I) SD of rainfall (J) kurtosis, K, of NDVI and EVI (K) K of temperature (L) K of rainfall. In all panels ENSO phases are highlighted by colors, for details, see inset legend of panel A. Panels B and C are based on combined data from gravid and storm sewer traps. In panels D, G and J NDVI and EVI are differentiated by color, see inset legend of panel D for details.
2.4.4. Time series model validation

We validated the time series models by leaving observations from 2016 out of the model fitting and forecasted mosquito abundance and WNV infection rates at time steps of 1, 2, 3, 4, 6 and 12 months. We tested the predictive ability of the model by estimating the predictive R^2 (Chaves and Pascual, 2007), which is defined as the variance normalized mean square error of the prediction, i.e.

$$\text{pred}R^2 = 1 - \frac{\text{mean square error/variance of the series}}{\text{variance of the series}}.$$

(1)

The predictive R^2 has a straightforward interpretation, where a predR^2 of 1 indicates perfect forecasts, but a negative value, or near 0, indicates a poor predictive ability (Chaves and Pascual, 2007).

3. Results

Data time series are shown in Fig. 2, where color codes are used to represent the phases of ENSO. During the study period, the most extreme ENSO occurred in 2015–2016, as shown by the Niño 3.4 index time series (Fig. 2A).

The HCPH MVCD used 686 and 476 locations for GV and SS traps throughout Harris County, respectively. A total of 10,533,033 female Cx. quinquefasciatus were collected using GV (5,371,840 mosquitoes, 51% of the samples) and SS (5,161,193 mosquitoes, 49%) traps. The total sampling effort, which is defined as the amount of mosquito trapping deployed for surveillance by Harris County, was 130,567 trap-nights, with 55% of the sampling effort from GV traps (71,849 trap-nights) and the remaining 45% from SS traps (58,718 trap nights). Monthly mosquito abundance, based on combined GV and SS trap collections, was highly variable (Fig. 2B), having an average (\pmSD) of 74.84 ± 47.89. Meanwhile, the average abundance for GV and SS traps was 67.49 ± 41.94 and 79.85 ± 64.05, respectively. Mosquito abundance peaks were observed when ENSO was not going through its hot and cold phases, a pattern also observed for the time series based on the vegetation indices.

Seasonal patterns of mosquito abundance for Cx. quinquefasciatus, based on both GV and SS traps, (Fig. 3A) were bimodal having a large peak in May and a second small peak in November. When separating the abundance by trap type, this bimodal pattern was not observed in GV traps, which had a single peak in May (Fig. 3A). However, the bimodal seasonality was observed in SS traps (Fig. 3B), which had peaks in May and November. Given these marked differences in abundance between GV and SS traps, we decided to perform time series analyses of the combined abundance time series, but also of mosquito abundance based on GV and SS traps separately.

Seasonal WNV infection patterns were unimodal with a seasonal peak in August (Fig. 3B), a pattern also observed separately for GV (Fig. 3C) and SS (Fig. 3D) traps. The NDVI has a seasonal peak from April to August (Fig. 3C), while EVI (Fig. 3D) has a unique peak in May. Temperature also had a unimodal pattern (Fig. 3E), with a peak in August, which was also observed in the gridded temperature data (Fig. 5E). Rainfall had two seasons, one relatively dry from January to April, and a wet season for the rest of the year, with August being consistently the driest month during the wet season (Fig. 3F), a similar pattern was also observed in the gridded data (Fig. 5F).

The cross wavelet coherence analyses show that interannual cycles, with a period between 3 and 4 years, of mosquito abundance (Fig. 4A) and WNV mosquito infection rates (Fig. 4B) were coherent with those observed in ENSO. Briefly, this is inferred by looking at the y-axis of the plot through time, i.e., the x-axis. In the y-axis, scale indicates the period of the cycles, and the coherence, which is coded by colors, measures the overlap in cycles present in the studied time series. Coherence varies between 0 and 1 and can be interpreted like a correlation estimate, where values near 1 indicate a near perfect association in the cycles of the studied time series and values close to 0 represent an independence of cycles at a given time scale (Chaves et al., 2014). Meanwhile, NDVI and EVI had seasonal cycles, with periods of 1 year, associated with mosquito abundance (Fig. 4C, E) and WNV infection rate (Fig. 4D, F). Temperature cycles were both seasonal and interannual, with cycles of 2 to 4 years, coherent with mosquito abundance (Fig. 4G) and WNV infection rates (Fig. 4H). Meanwhile, rainfall cycles were associated at an interannual scale, with cycles of 3 to 4 years, with cycles of mosquito abundance, which between 2002 and 2010 were also highly coherent at the seasonal scale with rainfall, (Fig. 4I) and WNV infection rates (Fig. 4J).

The autocorrelation functions of mosquito abundance (Fig. 5A) and WNV infection rates (Fig. 5B) suggested that both time series were at most second order (autocorrelated up to the second lag) and seasonal (significantly correlated at lag 12 months), meaning time series were seasonally autocorrelated with a 12-month lag. That autocorrelation structure was observed using the partial autocorrelation function of both mosquito abundance (Fig. 5C) and WNV infection rates (Fig. 5D).

With this information, a seasonal autoregressive model was fitted as the null model with the following form:

$$x_t = \mu + \phi_1 x_{t-1} + \phi_2 x_{t-2} + \phi_3 x_{t-3} - \phi_4 x_{t-13} - \phi_5 x_{t-14} + \varepsilon_t,$$

(2)

where μ is the mean of the time series $x_t = y_t - \mu$, where y_t is either monthly mosquito abundance or WNV infection rates, μ indicates time, and ε_t is a normally and identically distributed error. Model selection for mosquito abundance, the model presented in Eq. (2), suggested that the following model:

$$x_t = \mu + \phi_1 x_{t-1} + \phi_2 x_{t-2} + \phi_3 x_{t-3} + \phi_4 x_{t-13} + \varepsilon_t,$$

(3)

was the best null model for abundance estimates based on the combined SS and GV data. This null model was used to pre-whiten the time series of the weather and vegetation covariates, which were then used to estimate cross-correlation functions between the average values of the covariates with mosquito abundance (Fig. 5E) and WNV infection rate (Fig. 5F), the SD of the covariates with mosquito...
abundance (Fig. 5G) and WNV infection rate (Fig. 5H), and the kurtosis of the covariates with mosquito abundance (Fig. 5I) and WNV infection rate (Fig. 5J). We also estimated the ACF and PACF of mosquito abundance with GV (Fig. S4A, C) and SS traps (Fig. S4B, D), and the cross-correlation function of mean, SD, and kurtosis of the covariates with GV (Fig. S4E, G, I) and SS (Fig. S4F, H, J) traps.

The variables that were significantly associated with mosquito abundance were then considered in a full model:

\[x_t = \mu + \varphi_1 x_{t-1} + \varphi_{12} x_{t-12} - \varphi_1 \varphi_{12} x_{t-13} + \sum \text{cov}_{t-j} + \varepsilon_t \]

(4)

that included covariates \(\text{cov} \) with time lags \(j \geq 0 \). The process of model selection for the mosquito abundance model based on GV and SS traps, the abundance model based only on GV traps, and the abundance model based only on SS traps is presented in Tables S1, S2, and S3, respectively.

Parameter estimates for the best mosquito abundance model are presented in Table 1. Parameters included a positive association with the standard deviation of NDVI (2-month lag) and temperature kurtosis (9-month lag). Meanwhile, abundance was negatively associated with rainfall (no time lag), NDVI kurtosis (12-month lag) and EVI kurtosis (1-month lag). Significant parameters in the best models for mosquito abundance model based on GV and SS traps separately (Table S4) had similarities with the model based on data from both traps (Table 1). Both of those models did not have a significant seasonal autoregressive parameter, i.e., both time series were not significantly autocorrelated with themselves with a 12-month lag. Interestingly, both of these models (Table S4) were associated with EVI kurtosis with 1 month of lag, the association being negative like in the model of Table 1. Other parameters shared with the model presented in Table 1 also had the same sign such as the kurtosis of NDVI with a 12-month lag and a 9-month lag temperature kurtosis for the model based on SS traps (Table S4). Other parameters included variables that were not included in the best model presented in Table 1, and included both mean, SD, and kurtosis parameters (Table S4).

The best model for mosquito WNV infection rates (Table 2) was a second order seasonal autoregressive model, i.e., with an autoregressive component similar to the one described in Eq. (2), with mean temperature at an 8-month lag as a significant covariate. The process of model selection is shown in Table S5, which showed that WNV infection rate was not significantly associated \((P > 0.05)\) with mosquito abundance.

Finally, the process of model validation suggested the predictive ability of the mosquito abundance model was overall low (Fig. 6A), a pattern shared with the models based on GV (Fig. S5A) and SS (Fig. S5B) traps separately, which nevertheless outperformed the model combining the data from both types of traps. By contrast, the predictive accuracy of the WNV infection rate (Fig. 6B) model was high for 1 (80%) and 2 (60%) months, negative at 3 months, and overall decreased as the prediction step increased the number of months predicted at once.

4. Discussion

Our study found significant weather factors and measurements of their variability significantly associated with Cx. quinquefasciatus abundance and WNV infection rates during the study period (2002–2016) in Harris County, TX. Mosquito abundance generally peaked following the cold phases when ENSO activity did not go through distinct hot or cold phases (Fig. 2B). During the hot ENSO phase, we generally saw peaks in rainfall and greater variation in temperature and rainfall (Fig. 2). On the other hand, the cold ENSO phases were characterized by hotter temperature peaks and less rainfall, which resulted in less vegetation growth in Harris County (Fig. 2). During these hot and cold ENSO phases, we found lower Cx. quinquefasciatus abundance, which could be due to the excess rainfall and higher temperatures/low vegetation in the hot and cold phases, respectively. The increased amount of precipitation during the hot ENSO phase might wash out larval habitats for Cx. quinquefasciatus above- and belowground (Koenraad and Harrington, 2008; Shaman et al., 2002). This phenomenon was true for Cx.
Fig. 4. Cross wavelet coherence analysis. Coherence between sea surface temperature 3.4 (Niño 3.4) and (A) monthly average mosquito abundance per trap (MAMAPT) (B) West Nile virus mosquito infection rate (WNVMIR), Normalized Difference Vegetation Index (NDVI) and (C) MAMAPT (D) WNVMIR. Enhanced Vegetation Index (EVI) and (E) MAMAPT (F) WNVMIR. Temperature and (G) MAMAPT (H) WNVMIR. Rainfall and (I) MAMAPT (J) WNVMIR. In all plots the y-axis presents the scale, or period measured in years, at which two time series are coherent, while the x-axis represents time. A guide for coherence values is presented to the right of each panel. Coherence goes from zero (blue) to one (red). Red regions in the plots indicate frequencies and times for which the two series share power (i.e., variability). The cone of influence (where results are not influenced by the edges of the data) and significantly coherent ($P < 0.05$) scales through time are indicated by solid lines. MAMAPT and WNVMIR are based on combined data from gravid and storm sewer traps.

quinquefasciatus in the USA as observed in California (Heft and Walton, 2008) and Georgia (Chaves and Kitron, 2011; Nguyen et al., 2012) and *Cx. p. pipiens* in Illinois (Hamer et al., 2011). Extremely high temperatures are known to decrease the life span of the mosquito and prematurely kill mosquitoes before they are able to transmit the virus to a new host (Brault, 2009; Reisen, 1995; Reisen et al., 2006b). Vegetation is required for larval development of *Cx. quinquefasciatus* as it provides a source of organic matter and nutrients. The importance of vegetation has been investigated in other areas of the USA such as the cities of New York, Chicago and Houston, where the presence of vegetation was positively associated with human risk for WNV (Brownstein et al., 2002; Nolan et al., 2012; Ruiz et al., 2004).
Our results demonstrate that increased variability in both temperature and rainfall result in higher abundance of mosquitoes. Measurements of variability were significant covariates in the abundance models (Table 1). The significant covariates in the abundance model further highlight the importance in including measurements of environmental variability to investigate association patterns between mosquito

![Figure 5](image1.png)

Fig. 5. Correlation functions. Auto-Correlation function, ACF of (A) monthly average mosquito abundance per trap (MAMAPT) and (B) West Nile virus mosquito infection rate, (WNVMIR). Partial Auto-Correlation function, PACF of (C) MAMAPT and (D) WNVMIR. Cross-Correlation functions, CCF of the average value of environmental variables with (E) MAMAPT and (F) WNVMIR. CCF of the standard deviation, SD, of environmental variables with (G) MAMAPT and (H) WNVMIR. CCF of the kurtosis, K, of environmental variables with (I) MAMAPT and (J) WNVMIR. In panels E to J environmental variables are color coded, for details, please refer to the insect legend of panel D. MAMAPT and WNVMIR are based on combined data from gravid and storm sewer traps.

![Figure 6](image2.png)

Fig. 6. Predictive R² for models selected as best to explain (A) monthly average mosquito abundance per trap (B) West Nile virus mosquito infection rate.
abundance dynamics and the weather. The covariates for the best mosquito abundance model that combined mosquito counts from both GV and SS traps included positive associations with the standard deviation of NDVI with a 2-month lag and the kurtosis of temperature with a 9-month lag. Rainfall with no lag, NDVI kurtosis with a 12-month lag, and EVI kurtosis with a 1-month lag had a negative association with mosquito abundance. The phenomenon emphasizing the importance of significant variation in weather and vegetation on mosquito abundance follows Schmalhausen’s Law, the biological principle stating that organisms are sensitive to both average environmental conditions and environmental variability, which has been previously reported for Cx. quinquefasciatus and other disease vectors (Chaves and Koenraadt, 2010; Hayes, 1975; Hayes and Downs, 1980; Hayes and Hsi, 1975; Ng et al., 2018). Therefore, the more neutral conditions seen when ENSO is not going through distinct hot and cold phases may allow for greater abundance of Cx. quinquefasciatus.

Interestingly, our study did not include temperature within the same summer season as a significant variable in either of the abundance or infection rate models, which other studies have found among other mosquito species (Chuang et al., 2011; Degateano, 2005; Ruiz et al., 2010). This could be due to differences in the life history traits for the mosquito species of interest and the regional effects of weather, which may ultimately result in heterogeneous results when comparing relationships between the weather, mosquito abundance, and infection rates (Ciota et al., 2014; Wimberly et al., 2014). Instead, we found that temperature with an 8-month lag was a significantly positive covariate in our WNV infection rate model (Table 2). Given that infection rates generally peak around August in Harris County (Fig. 3B), warmer temperatures during the winter are expected to increase the infection rates the following summer. In general, warmer winter temperatures preceding a WNV season has been a significant factor of interest in other studies using various measurements of WNV, including mosquito abundance of different Culex species, infection rates/vector indexes, and human cases (Chung et al., 2013; Degroote et al., 2014; Reisen et al., 2010; Wimberly et al., 2014).

One mechanism for increased infection rates in the summer following a mild winter is that warmer temperatures in the winter allow Cx. quinquefasciatus to remain active gonotrophically and maintain their populations. Alternatively, Cx. quinquefasciatus can survive through the winter by entering quiescence when temperatures drop, but can become active once temperatures increase again (Diniz et al., 2017; Eldridge, 1968; Reisen et al., 1986). Quiescence is a period of non-seasonal dormancy characterized by slowed metabolism in response to environmental stimuli (Clements, 1992). Since Cx. quinquefasciatus does not enter diapause and is not hormonally-controlled to enter a state of dormancy, physiological activity can be restored once the stimulus that induces quiescence ceases (Denlinger and Arzheimer, 2004; Diniz et al., 2017; Lacour et al., 2015; Vinogradova, 2007). The sustained activity in mosquito populations through warmer winter temperatures also permit the maintenance of low levels of WNV in the overwintering adults as well as the potential for enzootic activity and horizontal activity among birds in the winter or spring (Goddard et al., 2003; Hinton et al., 2015; Montecino-Latorre and Barker, 2018; Nelms et al., 2013). For example, when Cx. pipiens is inoculated with WNV and held at reduced temperatures (10 °C) for 21–42 days, the virus is not fully disseminated. Once the mosquito is transferred to an incubation temperature of 26 °C, the dissemination rates increased (Dohm and Turell, 2001). While vertical transmission of WNV is possible, it occurs inconsistently and at very low rates (Goddard et al., 2003). Studies on the effects of overwintering in Cx. quinquefasciatus and WNV infection in Texas are worth investigating further.

Another mechanism for increased WNV infection rates during a warm winter relates to the opportunistic feeding patterns of Cx. quinquefasciatus, which more frequently feed on avian hosts (Molaei et al., 2007). Warmer winter temperatures can signal the arrival of an early spring, allowing birds to initiate recruitment of young earlier (Forchhammer et al., 1998; Walther et al., 2002). Consequently, increased populations of susceptible juvenile birds are known to fuel the amplification of WNV (Hamer et al., 2008b). Mosquito feeding may coincide with warmer temperatures in the winter, allowing mosquitoes to become infected even during periods of expected low activity since birds may still be viremic or become infected from exposure to feces containing WNV (Dawson et al., 2007; Eldridge, 1968; Hinton et al., 2015).

An interesting observation was the difference in mosquito abundance between GV and SS traps. The GV traps exhibited a unimodal abundance distribution, however, SS traps showed a bimodal distribution (Fig. S2). The second abundance peak for Cx. quinquefasciatus trapped in SS traps during November could be attributed to its life history. The SS traps are placed underground in storm sewers and baited to capture host-seeking mosquitoes. However, Cx. quinquefasciatus will also use storm sewers as hibernacula or shelter during cooler months to overwinter into the next spring season (Strickman and Lang, 1986). With this in mind, the second peak in the abundance in November could be attributed to the mosquito’s retreat into underground storm sewers to avoid harsh winter conditions since this species does not enter diapause, but instead undergoes quiescence when retreating to storm drains (Nelms et al., 2013; Nguyen et al., 2012; Reisen, 2012; Reisen et al., 1986; Reisen et al., 2010; Siirin et al., 2004; Strickman, 1983, 1988; Strickman and Lang, 1986). Dissection studies investigating overwintering techniques in California have demonstrated that Cx. quinquefasciatus mosquitoes undergo quiescence rather than diapause, which is the overwintering technique for Cx. pipiens Linnaeus and Cx. tarsalis Coquillett. However, this type of study, to the best of our knowledge, has not been performed in Texas and warrants further consideration to elucidate overwintering patterns for mosquitoes found in storm drains.

The abundance models for this study performed poorly (Fig. 6A), but the infection rate model performed well when predicting between 1 and 2 months ahead (Fig. 6B). The low predictive ability of the abundance model can be attributed to unavoidable logistical constraints that emerge in large-scale vector surveillance systems such as in Harris County, TX. For example, our model did not consider mosquito control efforts by HCHP MVD or that may have affected local mosquito populations. mosquito control in Harris County consists of aboveground-

Table 1

<table>
<thead>
<tr>
<th>Parameters (lag)</th>
<th>Infection model</th>
<th>Estimates</th>
<th>S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td></td>
<td>74.1795</td>
<td>6.3822</td>
</tr>
<tr>
<td>AR (1)</td>
<td></td>
<td>0.3873</td>
<td>0.0790</td>
</tr>
<tr>
<td>SAR (12)</td>
<td></td>
<td>0.3414</td>
<td>0.0822</td>
</tr>
<tr>
<td>Rainfall (0)</td>
<td>−2.6398</td>
<td>1.0384</td>
<td></td>
</tr>
<tr>
<td>NDVI SD (2)</td>
<td>792.7775</td>
<td>379.7516</td>
<td></td>
</tr>
<tr>
<td>NDVI K (12)</td>
<td>−14.7881</td>
<td>4.8280</td>
<td></td>
</tr>
<tr>
<td>EVI K (1)</td>
<td>−8.8210</td>
<td>3.7416</td>
<td></td>
</tr>
<tr>
<td>Temperature K (9)</td>
<td>7.8873</td>
<td>2.4330</td>
<td></td>
</tr>
</tbody>
</table>

Parameter estimates for the best time series model explaining changes in Culex quinquefasciatus abundance sampled with gravid and storm-sewer traps in Harris County, TX. $r^2 = 1.373e−6$, Log Likelihood $= −705.7$, AIC $= 1429.4$. Winter season has been a significant factor of interest in other studies using various measurements of WNV, including mosquito abundance of different Culex species, infection rates/vector indexes, and human cases (Chung et al., 2013; Degroote et al., 2014; Reisen et al., 2010; Wimberly et al., 2014).
based ultra-low volume (ULV) adulticiding in response to a positive mosquito pool. Within the same week of detecting a positive pool, ULV adulticiding will occur in the operational area (Fredregill et al., 2011). During peak seasons, adulticiding may occur more than once a week, which may affect the abundance of mosquitoes trapped by SS and GV traps that target adult mosquitoes.

Another challenge is related to the temporal and spatial scales of our study. Given the long temporal range of our data, we used a monthly scale for the time series analysis. Having a temporal scale of weekly data would better reflect the finer nuances in mosquito abundance dynamics and improve model predictive ability (Chaves et al., 2013; Chuang et al., 2017). Spatial scale is also an important factor when considering infection data since results and conclusions may differ depending on the scale chosen for the study (Winters et al., 2010). We summarized data over a large spatial scale, with Harris County covering over 4600 km². At smaller spatial scales, we might better capture local population dynamics, as observed in more finely grained studies on mosquito population dynamics (Chaves et al., 2013; Ng et al., 2018).

A final factor to consider when explaining the low predictive ability of our mosquito abundance models is the movement of trap locations throughout the county during the study period. A total of 686 and 476 trap locations were used for GV and SS traps, respectively, (Fig. 1). Throughout the study period, only 15 GV traps and 24 SS traps remained in the same location (Fig. S6). In contrast, 392 GV traps and 324 SS traps were deployed ~50 times at the same location, which demonstrates the lack of consistency in trap locations throughout the study period (Fig. S6). Inconsistencies from trapping may lead to artifacts and biases that do not necessarily reflect local population dynamics of the previous trap locations. The location of the trap influences the mosquito abundance estimates, which may help explain the low predictive capability of the abundance models given that many of these traps moved throughout the study period (Brown et al., 2008c).

5. Conclusions

Our study demonstrated the importance of long-term systematic sampling of mosquitoes to build a predictive model as part of an early warning system. This is the first study in Texas, and overall the southwestern USA, to use a long-term dataset to examine weather factors and variability to explain WNV vector abundance and WNV infection rates. We developed and validated models that can accurately predict WNV infection rates in response to weather phenomena. After one of the largest epidemics of WNV in 2012, which was centered in Dallas County, TX, Harris County can integrate these models into a proactive system to initiate interventions and allocate resources for vector control and disease prevention before the appearance of human WNV cases to prevent another devastating epidemic.

Supplementary data to this article can be found online at https://doi.org/10.1016/j.scitotenv.2019.04.109.

Acknowledgements

We thank current and former staff of Harris County Public Health Mosquito and Vector Control Division for their contribution to the surveillance dataset. We also thank the two anonymous reviewers for their feedback on this manuscript. We dedicate this manuscript to the late Marilyn Ruiz O’Hara, a colleague and mentor in the study of WNV spatial ecology.

Funding

This work was supported by Cooperative Agreement (grant number U01CK00512), funded by the Centers for Disease Control and Prevention (CDC). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of CDC or the Department of Health and Human Services.

References

